22 research outputs found

    HexagDLy - Processing hexagonally sampled data with CNNs in PyTorch

    Full text link
    HexagDLy is a Python-library extending the PyTorch deep learning framework with convolution and pooling operations on hexagonal grids. It aims to ease the access to convolutional neural networks for applications that rely on hexagonally sampled data as, for example, commonly found in ground-based astroparticle physics experiments

    Probing Convolutional Neural Networks for Event Reconstruction in {\gamma}-Ray Astronomy with Cherenkov Telescopes

    Full text link
    A dramatic progress in the field of computer vision has been made in recent years by applying deep learning techniques. State-of-the-art performance in image recognition is thereby reached with Convolutional Neural Networks (CNNs). CNNs are a powerful class of artificial neural networks, characterized by requiring fewer connections and free parameters than traditional neural networks and exploiting spatial symmetries in the input data. Moreover, CNNs have the ability to automatically extract general characteristic features from data sets and create abstract data representations which can perform very robust predictions. This suggests that experiments using Cherenkov telescopes could harness these powerful machine learning algorithms to improve the analysis of particle-induced air-showers, where the properties of primary shower particles are reconstructed from shower images recorded by the telescopes. In this work, we present initial results of a CNN-based analysis for background rejection and shower reconstruction, utilizing simulation data from the H.E.S.S. experiment. We concentrate on supervised training methods and outline the influence of image sampling on the performance of the CNN-model predictions.Comment: 8 pages, 4 figures, Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Kore

    Validating Monte Carlo simulations for an analysis chain in H.E.S.S

    Full text link
    Imaging Air Cherenkov Telescopes (IACTs) detect very high energetic (VHE) gamma rays. They observe the Cherenkov light emitted in electromagnetic shower cascades that gamma rays induce in the atmosphere. A precise reconstruction of the primary photon energy and the source flux depends heavily on accurate Monte Carlo (MC) simulations of the shower propagation and the detector response, and therefore also on adequate assumptions about the atmosphere at the site and time of a measurement. Here, we present the results of an extensive validation of the MC simulations for an analysis chain of the H.E.S.S. experiment with special focus on the recently installed FlashCam camera on the large 28 m telescope. One goal of this work was to create a flexible and easy-to-use framework to facilitate the detailed validation of MC simulations also for past and future phases of the H.E.S.S. experiment. Guided by the underlying physics, the detector simulation and the atmospheric transmission profiles were gradually improved until low level parameters such as cosmic ray (CR) trigger rates matched within a few percent between simulations and observational data. This led to instrument response functions (IRFs) with which the analysis of current H.E.S.S. data can ultimately be carried out within percent accuracy, substantially improving earlier simulations.Comment: 8 pages, 4 figures, 1 table. Accepted as Proceeding of the 7th Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2022

    Exploring the Îł-ray sky around the stellar cluster Westerlund 2 with the H.E.S.S. Experiment

    Get PDF
    In dieser Arbeit wird eine Analyse der TeV gamma-Strahlung in der Region um den galaktischen Sternhaufen Westerlund 2 präsentiert. Der dazu analysierte Datensatz beruht auf Observationen mit den Cherenkov Teleskopen des High Energy Stereoscopic System (H.E.S.S.) Experiments und umfasst ~80h Beobachtungszeit. Für die Datenanalyse wird die open-source Software gammapy benutzt, um morphologische und spektrale Modelle der gamma-Emission zu erstellen. Zur Modellauswahl wird das Akaike-Informationskriterium angewandt. Die Ergebisse der Analysen werden weiter mit Daten aus anderen Wellenlängenbereichen kombiniert, um Schlüsse auf den möglichen Ursprung der TeV-Signale zu ziehen. Neben Hinweisen auf eine diffuse gamma-Emission und mehrerer Hotspots um Westerlund 2 ist die Detektion von drei ausgedehnten gamma-Strahlungsquellen das Hauptergebnis der dargelegten Analysen. Zusätzlich zu den bekannten Quellen HESS J1023-575 und HESS J1026-582 wird die Detektion einer neuen, elliptischen Quelle südöstlich von HESS J1023-575 präsentiert. Diese neue Quelle, als ''TeV jet cloud'' bezeichnet, zeigt räumliche Übereinstimmung mit länglichen Gaswolken, die in CO und HI Radio Daten gefunden wurden. Der Ursprung dieser Gaswolken könnte der Jet eines Mikroquasars oder einer anisotropischen Supernova sein. Eine weitere räumliche Übereinstimmung zeigt HESS J1023-575 mit einer sphärischen Gaswolke, die ihren Ursprung in einer Supernova haben könnte. HESS J1023-575 und die Gaswolken sind dabei symmetrisch zur Hauptachse der neuen elliptischen gamma-Quelle ausgerichtet, was eine Verbindung der Komponenten in einem hadronischen Emissionszenario nahelegt. Aus den Wolkenmassen und der gamma-Emission ergibt sich eine Verstärkung der kosmischen Strahlung in der Region, was auf aktive Teilchenbeschleunigung hindeutet. Sollte ein Mikroquasar in der Region gefunden werden, könnte dieses die erste Detektion eines galaktischen hochenergetischen Jets mit Cherenkov Teleskopen sein.This work presents a study of the TeV gamma-ray emission in the region of the stellar cluster Westerlund 2. The main dataset analysed in this work was obtained with the imaging atmospheric Cherenkov telescopes of the High Energy Stereoscopic System (H.E.S.S.), comprising a total of ~80h of observation time. The high-level analysis of the dataset is performed with the open-source software gammapy to produce extensive spectral and spatial models for the observed emission. The best-fitting models are determined by using the Akaike information criterion. The results are combined with findings from other wavelengths to probe different emission scenarios. Besides hints of a diffuse emission and the detection of multiple hotspots, the presented studies yield three extended gamma-ray sources around Westerlund 2. Besides the known sources HESS J1026-582 and HESS J1023-575, an elongated elliptical gamma-ray source referred to as ''TeV jet cloud'' is newly found to the south east of HESS J1023-575. It shows a spatial coincidence with elongated cloud structures seen in CO and HI radio data which may originate from a high energy jet of a mircroquasar or an anisotropic supernova. Another spatial agreement is seen between HESS J1023-575 and a spherical shell of hydrogen gas which may be the remains of an old supernova remnant. HESS J1023-575 and the gas cloud structures symmetrically align along the major axis of the TeV jet cloud. This suggests a connection of these components in a hadronic emission scenario. Combining the masses of the clouds with the measured gamma-ray flux yields a high cosmic ray enhancement factor, suggesting active particle acceleration in the region. If a microquasar would be found around the best-fit position of HESS J1023-575, this could be the first detection of a galactic high energy jet at TeV energies with Cherenkov telescopes

    Application of Complex Event Processing Softwareto Error Detection and Recovery for Arrays of Cherenkov Telescopes

    No full text
    Data acquisition (DAQ) and control systems for arrays of Cherenkov telescopes comprise hundreds of distributed software processes that implement the readout, control and monitoring of various hardware devices. A multitude of different error conditions (malfunctioning detectorhardware, crashing software, failures of network and computing equipment etc.) can occur and must be dealt with to ensure the speedy continuation of observations and an efficient use of dark time. Flexible, fast and configurable methods for automatic and centralized error detection and recovery are therefore highly desirable for the current generation of ground-based Cherenkovexperiments (H.E.S.S., MAGIC, VERITAS) and will be important for the Cherenkov Telescope Array (CTA), a more complex observatory with O(100) telescopes. This contribution describes a Java-based software demonstrator that was developed for the High Energy Stereoscopic System (H.E.S.S.) and uses the complex event processing engine Esper for error detection and recovery.The software demonstrator analyses streams of error messages in the time domain and aims to apply recovery procedures that reflect the knowledge of DAQ and detector experts

    Validating Monte Carlo simulations for an analysis chain in H.E.S.S

    No full text
    Imaging Air Cherenkov Telescopes (IACTs) detect very high energetic (VHE) gamma rays. They observe the Cherenkov light emitted in electromagnetic shower cascades that gamma rays induce in the atmosphere. A precise reconstruction of the primary photon energy and the source flux depends heavily on accurate Monte Carlo (MC) simulations of the shower propagation and the detector response, and therefore also on adequate assumptions about the atmosphere at the site and time of a measurement. Here, we present the results of an extensive validation of the MC simulations for an analysis chain of the H.E.S.S. experiment with special focus on the recently installed FlashCam camera on the large 28 m telescope. One goal of this work was to create a flexible and easy-to-use framework to facilitate the detailed validation of MC simulations also for past and future phases of the H.E.S.S. experiment. Guided by the underlying physics, the detector simulation and the atmospheric transmission profiles were gradually improved until low level parameters such as cosmic ray (CR) trigger rates matched within a few percent between simulations and observational data. This led to instrument response functions (IRFs) with which the analysis of current H.E.S.S. data can ultimately be carried out within percent accuracy, substantially improving earlier simulations

    The upgraded Data Acquisition System of the H.E.S.S. telescope array

    No full text
    International audienceThe High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes located in the Khomas Highland of Namibia. H.E.S.S. observes gamma rays above tens of GeV by detecting the Cherenkov light that is produced when Very High Energy gamma rays interact with the Earth’s atmosphere. The H.E.S.S. Data Acquisition System (DAQ) coordinates the nightly telescope operations, ensuring that the various components communicate properly and behave as intended. It also provides the interface between the telescopes and the people on shift who guide the operations. The DAQ comprises both the hardware and software, and since the beginning of H.E.S.S., both elements have been continuously adapted to improve the data-taking capabilities of the array and push the limits of what H.E.S.S. is capable of. Most recently, this includes the upgrade of the entire computing cluster hosting the DAQ software, and the accommodation of a new camera on the large 28m H.E.S.S. telescope. We discuss the performance of the upgraded DAQ and the lessons learned from these activities

    Probing the hadronic nature of the gamma-ray emission associated with Westerlund 2

    No full text
    Star-forming regions have been proposed as potential Galactic cosmic ray accelerators for decades. Cosmic ray acceleration can be probed through observations of gamma-rays produced in inelastic proton–proton collisions at GeV and TeV energies. In this paper, we analyse more than 11 yr of Fermi–LAT data from the direction of Westerlund 2, one of the most massive and best-studied star-forming regions in our Galaxy. In particular, we investigate the characteristics of the bright pulsar PSR J1023–5746 that dominates the gamma-ray emission below a few GeV at the position of Westerlund 2 and the underlying extended source FGES J1023.3–5747. The analysis results in a clear identification of FGES J1023.3–5747 as the GeV counterpart of the TeV source HESS J1023-575, through its morphological and spectral properties. This identification provides new clues about the origin of the HESS J1023-575 gamma-ray emission, favouring a hadronic origin of the emission, powered by Westerlund 2, rather than a leptonic origin related to either the pulsar wind nebula associated with PSR J1023–5746 or the cluster itself. This result indirectly supports the hypothesis that star-forming regions can contribute to the cosmic ray sea observed in our Galaxy
    corecore